

Popular Article

Domain: Veterinary Science
Vol 4 Issue 12, December 2025, 6133-6141

Alternative Protein Sources in Poultry Feeding

P. Meher*, S. Meher, S. N. Jadhav and S. L. Kolhe

Department of Animal Nutrition, C.V.Sc and AH, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha

Corresponding author: padmalayam@ouat.ac.in

[DOI:10.5281/TrendsinAgriculture.18384804](https://doi.org/10.5281/TrendsinAgriculture.18384804)

Introduction:

Protein stands as the single most critical and expensive macronutrient in poultry nutrition, a fact that has shaped the economics of the industry for decades. As a major constituent of the biologically active compounds within the avian body, protein is indispensable for the synthesis of body tissue, facilitating both renovation and new growth. It serves as the building block for essential enzymes and hormones that orchestrate the physiological processes of the bird. For modern broiler chickens, whose advanced genetics have pushed growth rates to unprecedented levels, the demand for dietary protein is exceptionally high. Meeting this demand requires a sophisticated understanding of not only the quantity of protein but also the precise profile of essential amino acids it provides (Fiorilla et al., 2024).

For generations, the global poultry industry has relied on two primary protein sources to meet these nutritional requirements: soybean meal and fish meal. These conventional pillars have been the foundation of feed formulation, but their long-term viability is now subject to significant and growing challenges.

Soybean meal remains the world's leading protein source for animal feed, highly valued for its nutrient density. However, the reliance on a single, globally traded commodity exposes the industry to supply chain vulnerabilities. Geopolitical and economic forces are already in motion to reduce this dependence, with major importers like China and the European Union actively seeking to diversify their feed ingredients. This strategic shift is driven by a desire for greater self-sufficiency and a recognition of the risks associated with a concentrated supply chain. The continued evolution of broiler genetics, which demands even more nutrient-dense diets, also puts pressure on the quality and consistency of this staple

ingredient.

Fish meal, once celebrated for its exceptional nutritive value and amino acid profile, has undergone a dramatic transformation from a dependable staple to a "luxury ingredient". This shift is a consequence of a confluence of factors, including intensifying demand from competing industries like aquafeeds and pet foods, coupled with the ecological reality of overfishing. The combination of a decrease in supply and a surge in demand has driven prices to "previously unimaginable levels". This has fundamentally altered the role of fish meal in poultry diets; it is no longer a foundational ingredient but rather a specialized "tool to overcome problems," used sparingly in sensitive diets for young birds or during periods of low feed intake.

The changing landscape of conventional protein sources reveals a more complex reality than a simple, uniform decline. While the fish meal market is clearly constrained by ecological limits and escalating costs, the demand for soybean meal in the U.S. broiler industry has actually increased significantly, with consumption rising by 21.5% from 2017 to 2022. This seemingly contradictory data highlights a critical point: the pressure for diversification is not a reaction to a failing system but a proactive strategy for building future resilience. The industry is not abandoning its conventional sources but is seeking to supplement them with a portfolio of alternatives that can mitigate risk, reduce environmental impact, and provide a more stable foundation for a growing global food system.

Plant-Based Proteins: The Next Generation of Crop-Based Feed

Nutritional Value and Benefits

The search for alternatives to conventional feeds has led the industry to re-evaluate and innovate within the realm of plant-based proteins. Moving beyond the reliance on soybean meal, a diverse array of legumes, oilseed cakes, and novel sources like algae have emerged as viable candidates. Legumes, such as peas and beans, offer a rich nutritional profile, providing high protein content and essential amino acids, most notably lysine. This makes them an ideal complementary protein source, particularly when combined with cereals, to create a well-rounded diet.

Oilseed cakes, the by-product of oil extraction, present a particularly attractive and cost-effective option. Sunflower meal (SFM), for example, is a suitable and cheaper alternative to soybean meal, with crude protein levels ranging from 29% to 45%. These meals are also good sources of essential minerals like calcium, phosphorus, and B-complex vitamins. In a study comparing the substitution of soybean meal with canola meal (CM) and SFM, researchers found that both could successfully replace up to 50% of the soybean meal without negatively impacting performance.

Beyond traditional crops, microalgae have garnered significant attention as a high-potential, next-generation protein source. Varieties like Spirulina and Chlorella can boast protein levels of up to 50-70%, surpassing even soybean meal. In addition to premium protein, algae are a rich reservoir of lipids, omega-3 fatty acids, and antioxidants, offering a multi-faceted nutritional boost to poultry diets (Memon et al., 2023).

Limitations and Challenges

Despite their promise, plant-based protein sources are not without their limitations. Many of these feedstuffs contain anti-nutritional factors (ANFs), such as tannins and oxalates, which can hinder nutrient absorption and digestibility. For example, the inclusion of sunflower meal alone can cause problems for ileum mucosal cells, leading to reduced nutrient absorption. The presence of these ANFs highlights the critical need for proper processing and feed formulation strategies to mitigate their adverse effects and unlock the full nutritional potential of the ingredient. Some plant-based sources also face the challenge of mycotoxin susceptibility, which can compromise feed quality and bird health. While these sources are valuable, they must be used with care and often require supplementary treatments to be effective. A simulation study, for instance, found that while other plant-based proteins were useful, soy remained a nutritionally superior replacement in a generalized diet.

A key aspect of utilizing these alternative plant-based ingredients is that their true potential is realized not by their intrinsic properties alone, but through a symbiotic relationship with modern feed technology. The efficacy of a feedstuff like sunflower meal is fundamentally enhanced by the addition of exogenous enzymes. These multienzymes can break down indigestible components and counteract the effects of ANFs, thereby improving the overall performance of the diet. This shift signifies that the feed industry is evolving from a simple reliance on new raw materials to a more sophisticated, technologically-driven approach to formulation, where the value of an ingredient is inextricably linked to the processing and additives used to enhance its bioavailability (Memon et al., 2023).

Economic Feasibility

The economic case for plant-based proteins is compelling, particularly when considering the volatility of conventional commodity markets. The use of locally sourced alternatives and agro-industrial by-products can provide a cost-effective solution, reduce competition with human food systems, and support a more circular resource economy.

However, the profitability of these alternatives is not a given. A case study comparing peanut meal to soybean meal demonstrated that while soybean meal was generally more profitable, peanut meal could become more economical under specific conditions, such as higher dietary protein levels or at times when soybean meal prices are elevated. This reinforces a crucial

economic principle in poultry nutrition: the most profitable diet is not necessarily the one that delivers maximum growth, but rather the one that provides the largest difference between costs and returns. This emphasis on optimizing the cost-to-return ratio, rather than maximizing a single performance metric, is a cornerstone of modern, resilient feed formulation.

Insect Proteins: A Solution from the Circular Economy

Nutritional Value and Benefits

Insects have emerged as a revolutionary and highly promising alternative protein source, capable of addressing both nutritional and environmental challenges in poultry farming. The nutritional profiles of species like Black Soldier Fly Larvae (BSFL) and mealworms are exceptional, with crude protein content ranging from 40% to 60% and up to 61%, respectively. These insect meals are not only rich in highly digestible protein but also contain a balanced spectrum of essential amino acids and valuable lipids. Beyond their macronutrient profile, they are a source of bioactive compounds like antimicrobial peptides (AMPs) and lauric acid, which have been shown to enhance animal immunity and improve gut health.

The most profound benefit of insect protein production lies in its alignment with a circular economy model. These insects possess a unique and powerful ability to convert organic waste—including kitchen garbage, food waste, and agricultural by-products—into high-value protein. This process simultaneously creates a valuable feed ingredient and significantly reduces environmental pollution and greenhouse gas emissions associated with organic waste accumulation. This transformative capability turns a costly waste disposal problem into a profitable revenue stream, a dual-cycle value proposition that is a key differentiator for insect farming and a compelling argument for its long-term viability.

Limitations and Challenges

Despite their potential, the widespread adoption of insect proteins is still hindered by significant obstacles. The primary challenge is economic: the production cost of insect meal remains high and is not yet competitive with conventional protein sources due to the current lack of large-scale commercial production.

Legislative and regulatory hurdles have also been a major barrier. Until recently, the use of processed animal proteins (PAPs) from insects was not authorized in farmed animal feed. While regulations have since evolved to permit the use of insect PAPs from eight specific species in poultry feed, they are still subject to stringent conditions. Furthermore, safety concerns, such as the potential for heavy metal accumulation from the rearing substrate, necessitate strict quality control and the establishment of robust breeding standards.

Economic Feasibility

The economic case for insect protein is built on the promise of economies of scale. While current costs are high, the fundamental efficiency of the process—converting low-cost organic waste into a nutrient-dense product—presents a strong business case for future growth. The ability of BSFL to improve the feed conversion ratio in broilers by as much as 20% and to produce high-value animal protein promises to enhance the overall profitability of poultry operations as production scales up and costs come down.

Animal By-products: Leveraging a Valuable Resource

Nutritional Value and Benefits

Animal by-products, such as meat meal and poultry by-product meal, represent a historically significant and still-valuable source of nutrition for poultry. These rendered products are processed to remove water and fat, resulting in a highly concentrated and cost-effective ingredient. They are rich in protein, with average crude protein content ranging from 50-60%, and provide essential minerals like calcium and phosphorus that are crucial for skeletal health. Their high digestibility and nutrient density make them a viable alternative to more expensive protein sources like fish meal and even a partial replacement for soybean meal without compromising bird performance. The use of these by-products also aligns with the principles of resource efficiency and waste reduction by transforming slaughterhouse waste into a useful feed ingredient.

Limitations and Challenges

The utilization of animal by-products is governed by a stringent legal framework due to historical safety concerns. The past use of these materials led to the spread of Transmissible Spongiform Encephalopathies (TSEs), which necessitated the implementation of a comprehensive "feed ban" on certain animal-derived proteins. The industry has since developed sophisticated, multi-layered safety mechanisms to manage these risks. For instance, only Category 3 material—the safest class of animal by-products—is authorized for use in farmed animal feed, and approved establishments must adhere to Hazard Analysis and Critical Control Points (HACCP) principles to ensure microbiological safety. Furthermore, full traceability is now a key tool in the feed sector, with systems like TRACES ensuring that ingredients can be tracked from source to end product, thereby providing an effective means of managing incidents. This rigorous regulatory environment is not merely an obstacle; it represents the maturation of the feed industry, demonstrating its capacity to responsibly utilize a valuable resource while preventing unacceptable public health risks.

Economic Feasibility

From an economic standpoint, animal by-products offer a compelling value

proposition. Their affordability and consistent supply—derived from a continuous waste stream—provide a significant cost advantage over many conventional and alternative protein sources. Their long shelf life and the dual benefit of waste reduction further enhance their economic appeal, making them a strategic component of a diversified feed portfolio.

Microbial and Novel Proteins: The Future of Fermentation

Nutritional Value and Benefits

Microbial proteins, often referred to as Single-Cell Proteins (SCP), represent a cutting-edge frontier in feed innovation. SCP is the protein-rich biomass produced by microorganisms such as yeast, fungi, bacteria, and algae. These organisms offer a superior nutritional profile, with yeasts commonly yielding products containing 50-55% protein and a full spectrum of essential amino acids. They can also be a valuable source of B-group vitamins and other micronutrients.

Fermentation, the process through which many of these proteins are created, is a multi-faceted solution that delivers benefits beyond simple protein provision. Fermented feed improves nutrient bioavailability, makes nutrients more digestible, and can even create new vitamins like B vitamins and vitamin K that are not present in raw feedstuffs. The process also breaks down anti-nutritional compounds and can make unpalatable ingredients, like barley husks, more accessible to the bird's digestive system. In addition to these nutritional benefits, fermented feed promotes gut health by fostering a beneficial microbial environment, increasing lactic acid bacteria, and creating a natural barrier to pathogens such as *Salmonella* and *E. coli*. This ability to improve nutrient absorption while simultaneously reducing the need for conventional feed additives and antibiotics makes fermentation a particularly transformative technology.

Limitations and Challenges

The primary barriers to the widespread adoption of microbial and fermented proteins are economic and related to public acceptance. The production of SCP requires a significant initial capital investment in fermentation infrastructure, and the operational costs, particularly for raw materials and energy, can be high. Furthermore, safety concerns, such as the high nucleic acid content of some SCP sources, and the potential for allergic reactions or toxins from the culture media, necessitate stringent quality control. Public acceptance also remains a challenge, particularly for products derived from waste streams, underscoring the need for transparent safety standards and consumer education.

A comparative analysis of the alternative protein sources reveals their unique roles in this new paradigm.

Emerging Protein Sources: Balancing Nutrition, Sustainability and Economics in Poultry Feed

As the global demand for sustainable livestock production intensifies, the exploration of alternative protein sources for poultry feed has become a critical focus. Traditional protein ingredients such as soybean meal are increasingly challenged by price volatility, environmental concerns, and supply chain dependencies. In this context, plant-based, insect-derived, animal by-product, and microbial proteins are emerging as promising substitutes—each offering distinct nutritional, environmental, and economic advantages as well as limitations.

Plant-based proteins: such as those derived from legumes and oilseeds, provide a protein-rich feed ingredient containing approximately 29–45% crude protein. They also serve as valuable sources of lysine, vitamins, and minerals. The major appeal of these proteins lies in their cost-effectiveness and potential for local sourcing, which collectively promote feed sustainability and reduce reliance on global soybean markets. However, plant-derived ingredients can contain anti-nutritional compounds such as tannins and oxalates, as well as exhibit susceptibility to mycotoxin contamination, necessitating careful processing. Although their profitability may fluctuate compared to conventional soy-based feeds, they become economically advantageous when used at higher inclusion levels or when conventional protein prices rise.

Insect proteins: have recently attracted considerable attention due to their impressive nutritional value, offering between 40–61% crude protein and a balanced amino acid profile. Additionally, many insect meals contain bioactive compounds that enhance gut health. From a sustainability perspective, insect farming exemplifies the principles of a circular economy by converting organic waste into valuable protein while mitigating environmental pollution and greenhouse gas emissions. Nevertheless, high production costs, limited industrial-scale operations, and evolving regulatory frameworks currently constrain their widespread use. Despite these challenges, the long-term economic feasibility of insect proteins is expected to improve with technological scaling and the growing market for waste-to-feed solutions.

Animal by-products: including meat and bone meal, are nutrient-dense feed components containing approximately 50–60% crude protein, along with essential minerals such as calcium and phosphorus. These by-products are highly digestible, affordable, and serve as effective substitutes for more expensive conventional proteins. However, stringent feed regulations, including bans on certain animal-derived materials, as well as the need for rigorous processing to prevent microbial contamination, restrict their utilization. When properly managed, these ingredients offer a significant cost advantage and contribute to

circular resource use within the livestock sector.

Microbial and novel proteins: derived from sources such as single-cell organisms (yeasts, algae, and bacteria), represent another frontier in sustainable protein innovation. These ingredients typically contain 50–55% crude protein and provide a complete amino acid profile along with valuable B-group vitamins. Their production through fermentation allows for rapid growth, improved nutrient bioavailability, and reduced dependence on antibiotics. However, high initial capital costs, public acceptance barriers, and elevated nucleic acid content remain obstacles. Despite these constraints, microbial proteins hold strong economic potential, given their low land and water requirements and their rapidly declining production costs due to technological advancements.

Conclusion

The future of poultry feeding is not about replacing one conventional protein source with a single alternative. The evidence overwhelmingly suggests that the most resilient and profitable path forward lies in a strategic portfolio approach, combining a diverse range of protein sources to mitigate risk, optimize costs, and enhance performance. The poultry industry is at a pivotal moment, transitioning from a reactive model—where ingredient choices are dictated by market volatility—to a proactive one, where a varied feed portfolio ensures long-term stability and profitability.

Alternative proteins are fundamental to this shift, offering a pathway to a more sustainable and secure global food system. By requiring less land and water and producing fewer greenhouse gas emissions, these alternatives are a vital solution to the challenges of a growing global population and a changing climate. The diversification of protein sources also strengthens food security by reducing the industry's reliance on a few concentrated global commodities.

The new definition of "optimal" in poultry nutrition is no longer about simply maximizing a single metric like body weight gain. Instead, it is about optimizing the cost-to-return ratio, where a strategic blend of ingredients can lead to a more efficient and profitable operation. This is evident in the economic analyses and case studies, which show that the most profitable dietary level of a protein source may not be the one that maximizes growth but the one that provides the largest difference between input costs and output returns.

References

Fiorilla, E., Ferrocino, I., Gariglio, M., Gai, F., Zambotto, V., Ozella, L., Franciosa, I., Giribaldi, M., Antoniazzi, S., Cappone, E. E., Fabrikov, D., Bongiorno, V., Ippolito, D., Sferra, C., Capucchio, M. T., & Schiavone, A. (2024). Alternative protein sources as a substitute for soybean meal in a slow-growing chicken diet. *Italian Journal of Animal Science*, 23(1).

Sogbe, L. O., Adewole, D. I., Alabi, A., & Awala, A. (2023). A review of single cell protein

production: The use of sustainable substrates, economic and environmental benefits. *Journal of Agricultural Science and Technology*, 1(1), 1-10.

Sogbe, L. O., Awala, A., & Adewole, D. I. (2023). Fermented feed: A promising strategy to enhance productivity and sustainability in broiler farming. *Animals*, 13(12).

Yuniastuti, E., Sudarmono, B., Wahyono, S., Handayani, D. R., Kresno, Y. H., Ningsih, A., & Kustono, K. (2022). A review of insect-based meal as a sustainable protein source for poultry production *Microorganisms*, 10(6), 1-10.