

Popular Article

Domain: Veterinary Science

Vol 5 Issue 1, Jan 2026, 40-46

Biofertilizers in Agriculture: Feeding Crops the Natural Way

Monali Raut, PhD Scholar

Dept. of Soil Science & Agricultural Chemistry,
University of Agricultural Science, GKVK, Bengaluru-560065

email ID-monali123raut@gmail.com

[DOI:10.5281/TrendsinAgri.18318323](https://doi.org/10.5281/TrendsinAgri.18318323)

Abstract

Despite increasing food production, the widespread use of artificial fertilizers has severely impacted the ecology and soil health. This emphasizes the urgency of sustainable farming solutions. A potent natural remedy is provided by biofertilizers, which are combinations of beneficial living microorganisms like mycorrhizal fungi, phosphate-solubilizers, and nitrogen-fixing bacteria. By improving nutrient availability and uptake, re-establishing soil biology, and lowering dependency on artificial inputs, they improve plant development. Their effectiveness and resistance have been enhanced through recent developments, including microbial consortia, genetic selection, and enhanced delivery systems. Biofertilizers are essential to sustainable and climate-smart agriculture, amid concerns with field consistency, standardization, and farmer awareness. They promise increased crop productivity, environmental health, and long-term agricultural sustainability, marking a significant shift from simply feeding plants to nourishing the soil ecosystem.

Keywords: Biofertilizers, Sustainable Agriculture, Plant Growth-Promoting Rhizobacteria (PGPR), Microbial Consortia, Nitrogen Fixation, Soil Health, Phosphate Solubilization, Mycorrhizal Fungi

Introduction

Agriculture in the modern era is at an intersection. Chemical fertilizers have been essential in increasing food production, but their prolonged usage has resulted in soil deterioration, decreased microbial activity, nutrient imbalances and pollution of the environment. Furthermore, in order to produce sufficient food at a reasonable cost for the growing human population, there is an urgent need for sustainable agricultural measures on a global level with reduced environmental and energy concerns. Since farmers and scientists look for sustainable alternatives, biofertilizers have emerged as a potent, natural option, working silently beneath the soil to nourish crops and restore soil health.

A biofertilizer of selected efficient living microbial cultures, when applied to plant surfaces, seed or soil, can colonize the rhizosphere or the interior of the host plant and then promote plant growth by increasing the availability, supply, or uptake of primary nutrients to

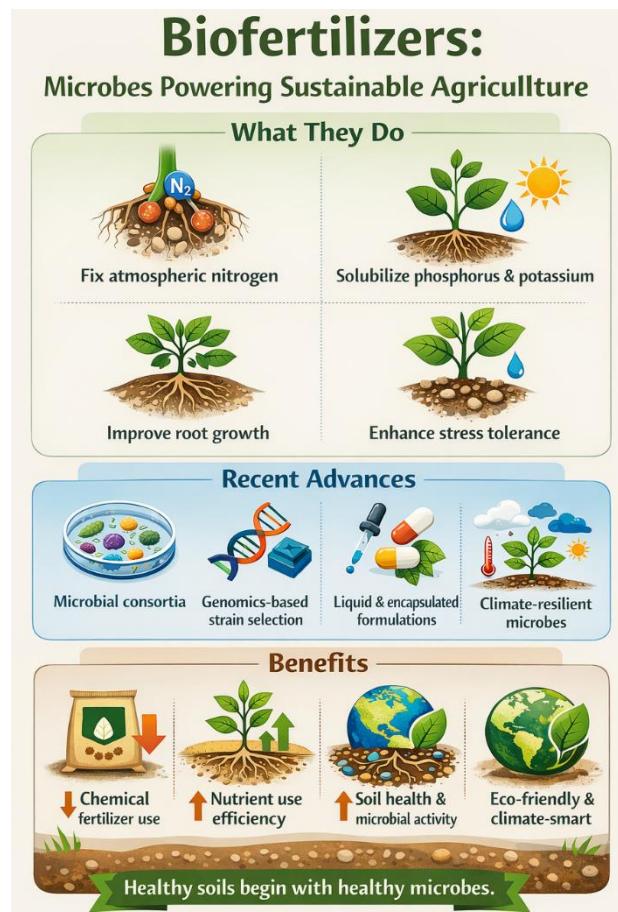
the host (Thomas and Singh, 2019). To put it simply, biofertilizers assist plants in helping themselves.

Major Types of Biofertilizers

Healthy soil is alive. Billions of microorganisms, including bacteria, fungi, actinomycetes, and algae, can be found in just one gram of fertile soil. These bacteria break down organic debris, release nutrients, improve soil structure, and shield plants from stress, along with other vital tasks. Numerous bacteria known as plant growth-promoting rhizobacteria (PGPR) have the ability to promote plant growth through both known and undiscovered processes. The synthesis of plant growth hormones, phosphorus solubilisation, atmospheric nitrogen fixation, and improved nutrient absorption are the key mechanisms that PGPR is known to display that support plant growth (Farrar *et al.*, 2014).

Biofertilizers can be classified based on the nutrients they help mobilize:

1. Nitrogen-Fixing Biofertilizers


Nitrogen is essential for plant growth, but plants cannot directly use atmospheric nitrogen. Certain microbes can convert atmospheric nitrogen into plant-usable forms (Vessey, 2003)

- *Rhizobium* (legumes)
- *Azotobacter* (non-leguminous crops)
- *Azospirillum* (cereals and grasses)
- Blue-green algae and *Azolla* (rice fields)

These microorganisms reduce the need for synthetic nitrogen fertilizers while improving soil fertility.

2. Phosphate-Solubilizing Biofertilizers

A large portion of soil phosphorus is present in insoluble forms unavailable to plants.

Phosphate-solubilizing bacteria and fungi release organic acids that convert this locked phosphorus into soluble forms (Khan *et al.* 2009)

Common examples include *Bacillus*, *Pseudomonas*, and *Aspergillus* species.

3. Potassium and Micronutrient Solubilizers

Soil microbes such as bacteria (*Bacillus mucilaginosus*, *Bacillus edaphicus*, *Bacillus circulans*), fungi (*Aspergillus niger*, *Aspergillus fumigatus*, and *Aspergillus terreus*), and actinomycetes have been identified as some of the important solubilizers of potassium from insoluble matrices to an accessible form for plant use (Yadav and Sidhu, 2016)

Achromobacter xylosoxidans, *A. chroococcum*, *B. subtilis*, *B. megaterium*, *Bradyrhizobium*, *Pseudomonas* sp., *Brevibacillus* sp., *Kluyvera ascorbata*, *Mesorhizobium*, *Pseudomonas putida*, *Pseudomonas aeruginosa*, *Ralstonia metallidurans*, *Rhizobium*, *Sinorhizobium* sp., *Variovorax paradoxus*, *Ochrobactrum* sp., *Psycrobacter* sp., and *Xanthomonas* sp. are a few PGPR among the wide array of PGPR that play a pivotal role in bioremediation of heavy metal toxicity (Shinwari *et al.* 2015)

4. Mycorrhizal Fungi

Mycorrhizae form symbiotic associations with plant roots. Their extensive fungal networks increase the effective root surface area, enhancing water and nutrient absorption—especially phosphorus, while improving drought tolerance (Jha *et al.* 2012)

Endo-mycorrhizae primarily include Arbuscular Mycorrhizal (AM) fungi like *Glomus*, *Endogone*, which are common in crops (maize, wheat, soy) and most plants. They form internal structures (arbuscules, vesicles) within root cells. Other types are Orchid mycorrhizae, which are vital for orchid seed germination, and Ericoid mycorrhizae, found in plants like heather, all characterized by fungal hyphae penetrating root cells for nutrient exchange.

Common in pines, oaks, birches, firs, and beeches, ecto-mycorrhizae are symbiotic fungi that create sheaths outside tree roots. These fungi, which include *Amanita*, *Boletus*, *Lactarius*, *Russula*, and truffles, are essential for nutrient uptake and forest health and produce visible mushrooms. Examples that are essential for the cycling of nutrients are Scots pine with *Suillus* fungi or oak with Truffle mushrooms.

Biofertilizers and Sustainable Agriculture

Biofertilizers align perfectly with the principles of sustainable agriculture and climate-smart farming. By increasing root growth and microbial biomass, they improve soil carbon storage while lowering greenhouse gas emissions related to the manufacturing and application of chemical fertilisers. Biofertilizers are essential in natural and organic farming systems. Integrated nutrient management, which combines biofertilizers with reduced chemical inputs,

has been effective in maintaining yields while maintaining soil fertility even in conventional farming.

Recent Advances in Biofertilizers

1. Microbial Consortia and Multi-Strain Formulations

However, recent studies highlight the use of microbial consortia, which are groups of bacteria and fungi that work collectively to provide an array of advantages, such as phosphate solubilisation and nitrogen fixation, while also enhancing root colonisation and plant development under stress. In field settings, these mixed inoculants frequently perform better than single-strain biofertilizers (Bashan *et al.*, 2014; Backer *et al.*, 2018).

2. Genome-Based Selection and Genetic Enhancement

Cutting-edge genomic tools are increasingly used to identify key genes involved in nutrient mobilization and plant growth promotion, selection of superior microbial strains with traits such as drought tolerance, and engineering microbes with enhanced functional abilities, although such methods remain strictly controlled in many regions. These advances have expedited the targeted development of highly effective biofertilizers (Berg *et al.*, 2020; Trivedi *et al.*, 2020).

3. Encapsulation and Improved Delivery Systems

Microbial survival and efficient delivery are critical components of biofertilizer performance; new formulation technologies like polymer or gel encapsulation, nano-carriers, and controlled-release systems improve root colonisation and farmer usability, protect beneficial inoculants during storage and field application, and improve microbial viability under heat and desiccation stress (Hamed *et al.*, 2024; Lateef, 2021).

4. Integration with Precision Agriculture

Farmers are able to customise microbial inputs to particular soil zones where beneficial microorganisms are most needed, owing to the increasing integration of biofertilizers with precision agricultural technologies like soil sensors, drones, and variable-rate applicators. This site-specific application enhances overall field-level efficacy, boosts microbial establishment, and optimises input costs (Trivedi *et al.*, 2020; Getahun *et al.*, 2024).

5. Focus on Stress-Adaptive Microbes

Current research is increasingly concentrated on beneficial microbes that improve root architecture under unfavourable conditions, boost antioxidant defence mechanisms, and improve plant tolerance to drought, salinity, and heat stress due to the escalating climate extremes. These functional characteristics make biofertilizers more than just a source of nutrients, making them essential instruments for enhancing crop resilience in the face of climatic stress (Complant *et al.*, 2019; Berg *et al.*, 2020).

India-Specific Case Studies

Azolla and blue-green algae have long been utilised as biological inputs in Indian rice ecosystems to fix atmospheric nitrogen and add 20–30 kg N ha⁻¹ to lowland rice soils, hence lowering the requirement for chemical nitrogen fertilisers (Vikaspedia: Biofertilizers – India context). For legumes like soybeans and chickpeas, crop-specific Rhizobium inoculants are advised because they enhance nodulation and can boost yields by 10–35% in Indian circumstances (TNAU Biofertilizer Unit).

In horticultural systems, phosphorus availability and plant growth are improved by phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi, which are essential to integrated nutrient management (Integrated Nutrient Management report). Biofertilizer inoculations, such as Azospirillum and other PGPR strains, boost millets and sorghum growth, moisture usage efficiency, and yield stability in rainfed dryland cropping (TNAU Biofertilizer Unit; Vikaspedia).

Key Challenges

1. Variability in Field Performance Biofertilizers often work well in controlled laboratory or greenhouse conditions but show inconsistent results in farmers' fields due to variation in soil type, climate variables, and competition with native microorganisms. This inconsistency still limits farmer adoption.

2. Quality Control and Standardization

Several issues need improvement: low viable cell counts at the point of use, poor shelf life under tropical conditions, and contamination with non-beneficial microbes. Many countries lack strict quality standards and certification systems.

3. Lack of Awareness and Training

Farmers and extension workers may not fully understand how biofertilizers work and optimal application timing and methods. This knowledge gap discourages use and lowers effectiveness.

4. Policy and Regulatory Barriers

Regulations differ widely between countries. Some have robust approval systems; others lack clear regulation, leading to substandard products. There is an immediate need for harmonised, science-based regulatory systems.

5. Interaction Complexities

Beneficial microbes interact with soil chemistry, plant genotype, and existing microbiota. These interactions are complex, making it hard to forecast outcomes in every field scenario.

Future Prospects

Single-strain products are giving way to more advanced, system-based biofertilizers in the future. With the potential to improve crop resilience and nutrient usage efficiency, emerging research focuses on synthetic microbial communities made up of balanced mixtures of bacteria, fungi, and archaea that are adapted to particular crops, soils, and stress conditions. By forecasting field-specific microbial performance, suggesting tailored consortia, and optimizing application time and dosage, the combination of artificial intelligence and big data can further improve the usage of biofertilizer.

Microbial survival and root colonisation are anticipated to be enhanced concurrently by next-generation delivery platforms, such as smart seed coatings, moisture-responsive hydrogels, and microbiome-guided nanocarriers. With the integration of composts, biogas slurry, and varied crop rotations, biofertilizers will become more and more compatible with circular and regenerative agriculture. They will probably be used in horticultural, tuber, and high-value medicinal crops in addition to grains and legumes. Biofertilizers can indirectly help mitigate climate change by increasing soil microbial activity and carbon sequestration.

When combined, these developments will lower uncertainty, increase field dependability, and hasten farmers' use of biofertilizers as essential inputs in sustainable agriculture.

Conclusion

The transition from feeding plants to feeding the soil is represented by biofertilizers. Farmers may cultivate healthier crops while preserving the environment by utilising the power of beneficial microbes. Despite being invisible, the microscopic organisms that surround plant roots have a significant influence on sustainable agriculture. The future of farming depends not only on what we put into the soil but also on how we interact with the natural world beneath it.

References

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., ... and Smith, D. L. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. *Frontiers in Plant Science*, 9, 1473.

Bashan, Y., de-Bashan, L.E., Prabhu, S.R. *et al.* (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). *Plant Soil*, 378, 1–33 <https://doi.org/10.1007/s11104-013-1956-x>

Berg, G., Rybakova, D., Fischer, D. *et al.* (2020). Microbiome definition re-visited: old concepts and new challenges. *Microbiome* 8, 103, <https://doi.org/10.1186/s40168-020-00875-0>.

Biofertilizer information — India context. *Vikaspedia: Agriculture/Bioinputs for Nutrient Management*. <https://en.vikaspedia.in/viewcontent/agriculture/agri-inputs/bio-inputs/bioinputs-for-nutrient-management/biofertilizers>

Biofertilizer information — India context. *Vikaspedia: Agriculture/Bioinputs for Nutrient Management*. <https://en.vikaspedia.in/viewcontent/agriculture/agri-inputs/bio-inputs/bioinputs-for-nutrient-management/biofertilizers>

Bio-fertilizer Unit. *Tamil Nadu Agricultural University (TNAU)*. Provides field-level performance of Rhizobium on legumes in India. https://agritech.tnau.ac.in/farm_enterprises/Farm%20enterprises%20biofertilizer.htm

Compañt, S., Samad, A., Faist, H., and Sessitsch, A. (2019). A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. *Journal of advanced research*, 19, 29-37.

Dey, P. (2018). *Integrated Nutrient Management for Improving Soil Health* (Policy/extension document). Includes discussion on PSB and AMF benefits in Indian cropping systems. https://www.nitforstates.gov.in/public-assets/Policy/policy_files/RNCNAA000644.pdf

Farrar, K., Bryant, D., and Cope-Selby, N. (2014). Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. *Plant Biotechnol J*, 12(9):1193-1206

Getahun, S., Kefale, H., and Gelaye, Y. (2024). Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. *The Scientific World Journal*, 1, 2126734.

Hamed, R., Jodeh, S., and Alkowni, R. (2024). Nano bio fertilizer capsules for sustainable agriculture. *Scientific Reports*, 14(1), 13646.

Lateef, A. (2021). The next big thing is very small: the paradox of diminutive microbes and nanoparticles. *Nano Plus: Science and Technology of Nanomaterials*, 2(1), 27-65.

Shinwari, K. I., Shah, A. U., Afridi, M. I., Zeeshan, M., Hussain, H., Hussain, J., Ahmad, O. (2015). Application of plant growth promoting rhizobacteria in the bioremediation of heavy metal polluted soil. *Asian Journal of Multidisciplinary Studies*, 3(4).

Thomas, L., and Singh, I. (2019). Microbial biofertilizers: types and applications. In *Biofertilizers for sustainable agriculture and environment* (pp. 1-19). Cham: Springer International Publishing.

Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., and Singh, B. K. (2020). Plant-microbiome interactions: from community assembly to plant health. *Nature Reviews Microbiology*, 18(11), 607-621.

Yadav, A. N. (2022) Potassium-solubilising microorganisms for agricultural sustainability. *J Appl Biol Biotech.* 10(05):1-4.