

IN AGRICULTURE SCIENCE

Smart Irrigation Systems: A Key Component of Precision Agronomy

Praveen Yadahalli¹, Sunita Kumari^{2*}, S. R. Imade³, Amarpreet Singh⁴

- ¹ Scientist (Horticulture), ICAR–KLE Krishi Vigyan Kendra, Mattikopp, Bailhongal Taluk, Belagavi 591147, Karnataka, India
- ^{2*}Associate Professor, Department of Agronomy, PGCA, RPCAU, Pusa, Samastipur 848125 ,Bihar, India
- ³ Assistant Professor (Agronomy), Anand Niketan College of Agriculture, Warora, Chandrapur, Maharashtra, India
- ⁴ Senior Scientist, ICAR-CICR, Regional Station, Sirsa 125055, Haryana, India
- *Corresponding Author Email: sunita@rpcau.ac.in
 DOI:10.5281/trendsinAgri.16963900

Abstract

Precision agronomy, commonly known as precision agriculture, uses modern technologies to improve agricultural methods and outcomes. Smart irrigation systems are one of its key components, known for its ability to efficiently regulate water application, increase crop yields and encourage sustainable farming. These systems combine Internet of Things (IoT) devices, sensors (soil moisture, weather, leaf stress), artificial intelligence (AI)-driven analytics and automation to precisely control irrigation time, location, and volume. This article discusses the technological underpinnings, agronomic benefits, environmental and economic benefits, adoption hurdles, and future directions of smart irrigation. This article demonstrates how smart irrigation is altering modern agriculture and boosting global food security through thorough analysis, graphical tables, and case studies that include cell phone-based control and nanosensor breakthroughs.

Keywords: smart irrigation system, precision agronomy, precision agriculture, IoT sensors, artificial intelligence (AI), water use efficiency (WUE), soil moisture monitoring, automation, smart farming, sustainable agriculture

Introduction

Agriculture accounts for approximately 70% of global freshwater usage, making efficient water management a cornerstone of sustainable food production. Traditional irrigation methods like flood or fixed-schedule sprinklers often result in water wastage, energy inefficiency and uneven crop performance. Smart irrigation systems, increasingly integral to precision agronomy, seek to remedy these shortcomings by delivering water in precise amounts, at the right times and to the right locations, informed by real-time data and predictive analytics.

Vol 4 Issue 8, August 2025, 4053-4057

Foundations of Smart Irrigation Systems

Core Technologies

Smart irrigation systems rest on several technological pillars:

IoT and Wireless Sensor Networks

Soil moisture sensors, weather stations, leaf stress sensors and nutrient monitors are embedded with IoT capabilities to capture real-time field data. Communication technologies such as LoRaWAN, NB-IoT, Zigbee and Cellular IoT ensure connectivity even in remote areas. Wireless sensor networks (WSNs) with low-power radios further support distributed sensing.

• Plant Physiological Monitoring

Leaf sensors capable of detecting water deficit stress by measuring leaf turgor can guide irrigation scheduling based on plant feedback.

• Automation & Control Hardware

Field devices like solenoid valves, drip irrigation emitters and automated sprinklers control water flow. Integration with variable rate technologies allows for spatially differentiated irrigation critical for heterogeneous field conditions.

• Edge & Cloud Computing, AI Analytics

Systems utilize AI and machine learning (e.g., LSTM models) to analyze environmental data, forecast needs and automate control decisions, sometimes at the edge to minimize latency. Cloud platforms provide dashboards, remote monitoring and decision support.

Connectivity Solutions

In remote or rural settings, where connectivity is limited, solutions such as solar-powered systems, satellite links, or decentralized networks help ensure uninterrupted operations.

Example: Mobile-Phone Control in India

A notable example of affordable smart irrigation technology is Nano Ganesh, which enables farmers to remotely switch irrigation pumps on or off via basic mobile phones using GSM communication. This system improves convenience, reduces wasted trips to fields especially in unreliable electricity contexts and has seen adoption by tens of thousands of Indian farmers.

Agronomic and Environmental Benefits

Water Use Efficiency & Resource Conservation

Smart irrigation systems offer significant reductions in water use:

- Up to 50% reduction compared to conventional methods.
- Some systems achieve 40–70% water savings depending on deployment context.

This conserves vital water resources and reduces strain on aquifers and watersheds.

Official Website: trendsinagriculturescience.com
Published: 26 August 2025
e-mail Address: trendsinagriculturescience@gmail.com

Vol 4 Issue 8, August 2025, 4053-4057

Yield Improvement & Crop Quality

Enhanced moisture regulation supports healthier, more uniform crops. Yield increases of 8–20% have been observed, with improvements in quality traits especially in sensitive cash crops like vegetables and fruit trees.

Energy and Labour Savings

By optimizing pump runtime and reducing overwatering, energy use can drop by 30% or more and labour for irrigation can be significantly reduced from 30–40 hours per acre per season in traditional systems to just 10–15 hours in smart systems.

Environmental Protection

Smart irrigation reduces runoff, erosion, nutrient leaching and pollution, thereby supporting ecosystem health and reducing greenhouse gas emissions.

Data-Driven Decision Making & Traceability

Data collected from sensors and control events can inform agronomic decisions, support compliance and enable traceability even through blockchain-enabled systems covering irrigation events and supply chain transparency.

Scalability & Adaptability

Smart irrigation technology is adaptable to farm size, crop type and region. Affordable satellite-driven platforms are extending access to smallholders and large agribusinesses alike.

Challenges in Adoption

Despite clear benefits, several barriers hinder widespread adoption:

- **High Initial Costs**: Investment in sensors, connectivity and automation equipment can be prohibitive for small-scale or resource-limited farmers.
- Connectivity Constraints: Many rural areas lack reliable internet, hindering real-time data transmission and remote management though emerging solutions like community networks or solar-powered transmitters help bridge this gap.
- **Technical Skills**: Farmers need training to interpret analytics and manage system calibration; user-friendly interfaces and extension services are vital.
- Data Security & Privacy: Digitizing irrigation systems raises concerns about cyber threats and misuse of farm data.
- **Integration**: Compatibility with existing irrigation infrastructure and systems is necessary for smooth integration and scaling.

Innovations and Future Directions

Emerging trends promise to further elevate smart irrigation capabilities:

• **AI-Driven Predictive Scheduling**: Systems use past data and weather forecasts to predict optimal watering times with high precision.

Vol 4 Issue 8, August 2025, 4053-4053

- Solar-Powered and Off-Grid Systems: Solar energy supports remote operations, reduces energy costs and expands deployment in areas without grid access.
- **Blockchain Traceability**: Ensuring transparency in water use and equitable distribution, blockchain records irrigation events in verifiable ledgers.
- Integration of Soil Health and Microbiome Data: Future platforms may integrate not just moisture but soil chemical, biological and microbial analytics for holistic irrigation decisions.
- Nano sensors & Advanced Sensing: Sensors at nanoscale can detect soil moisture, nutrient levels and stress indicators with great precision, paving the way for real-time, plant-level irrigation control.
- **Autonomous Distributed Systems**: Drone mapping, multispectral imaging and autonomous vehicles facilitate localized irrigation, pest detection and adaptive field interventions.
- Embedded AI in Low-Power Devices: Edge computing integrated into sensors enables low-latency decision-making and action, even in power-constrained environments.

Table 1: Comparative Metrics Conventional vs. Smart Irrigation Systems

Feature / Parameter	Conventional Irrigation (Typical	Smart Irrigation (Estimated	
	Estimates)	Performance)	
Water Usage (L/acre/year)	600,000 – 900,000	300,000 - 450,000	
Water Savings (%)	Baseline	Up to 50 %	
Crop Yield Increase (%)	Baseline	+10 % to +20 %	
Energy Consumption (kWh/season)	150–200	100–130	
Labour Required (hrs/acre/season)	30–40	10–15	
Cost Savings (%)	Baseline	Up to 30 %	
CO ₂ Emissions (Season)	Higher due to water/energy use	Reduced	
Remote Monitoring	Rarely Available	Standard	
Availability			
Automation and Control	Manual or scheduled irrigation	AI-driven, real-time	
Environmental Impact	High runoff, leaching risk	Minimized runoff & leaching	
Connectivity Enabled	No	Yes (IoT, satellite, mobile)	
Data Logging	Minimal	Full traceability	
System Scalability	Moderate	High (modular, scalable)	
Integration with legacy	Poor	Designed for compatibility	
systems			
ROI Period	Variable	Often 2–3 years (depending on system)	

Table 2: Selected Smart Irrigation Systems Key Features & Performance

System / Platform	Water	Crop Yield	Initial Cost	Key Features
	Savings (%)	Increase (%)	(USD)	
Farmonaut Satellite-	40–50	15–20	5,000-10,000	Satellite imagery, AI insights,
Based System				mobile dashboards
SmartFarm Pro	30–40	10–15	8,000-15,000	Soil moisture sensors,
				weather station, automation

Trends in Agriculture Science

Vol 4 Issue 8, August 2025, 4053-4057				
AquaSense X	35–45	12–18	7,000–12,000	Drone mapping, precision
				sprinklers, cloud-based
				control
EcoIrrigate	25–35	8–12	4,000-8,000	Solar-powered sensors, basic
				automation, water quality
Nano Ganesh	N/A (ft	Indirect yield	Low to	GSM mobile control of
(Mobile-Control)	control)	benefit	moderate	irrigation pumps, affordable
Nanosensor-enabled	Up to 50?	TBD (crop-	Experimental	Real-time micro-level
Systems		specific)	cost	moisture and nutrient sensing

Conclusions

Smart irrigation systems are not just a technological novelty they are a key component of modern precision agronomy. By integrating sensors, communications, AI and automation, these systems deliver water more efficiently, boost crop yields, save energy and labour and promote environmental stewardship. Though challenges remain such as cost, connectivity and technical literacy the trajectory of innovation (solar-powered systems, nano sensors, edge AI, blockchain traceability and more) promises wider adoption and transformative impacts. Smart irrigation exemplifies how technology can address critical global issues like water scarcity and food security by enabling agriculture to do more with less. For sustainable farming, climate resilience and future food systems, smart irrigation is a strategic and indispensable ally.

References

- **Farmonaut**, "Advantages of Precision Farming & Irrigation Management," detailing benefits like water reduction up to 50 %, yield increases, cost savings and sustainability features.
- **Farmonaut**, "Smart Irrigation System: Benefits & Importance Explained," including a comparison of conventional vs smart systems metrics.
- Wired (2015), on CropX's sensor-based irrigation recommendations reducing water use by 25 % via smartphone app.
- **Wikipedia**, "Leaf sensor," describes plant-based turgor sensing reducing irrigation frequency and conserving water.
- **arXiv** (2025), "Development of a Smart Autonomous Irrigation System Using IoT and AI," discussing IoT sensors, ESP32 and AI models for autonomous irrigation to boost labour productivity and water conservation.