

Synthetic Biology Approaches in Vegetable Crop Improvement

Nilesh Ninama*

IN AGRICULTURE SCIENCE
ISSN:2583-7850

Ph.D. Research Scholar, Department of Vegetable Science, Rajmata Vijayaraje Scindia krishi Vishwavidyalaya, Gwalior, Madhya Pradesh – 474002

*Corresponding author - <u>nileshninama181@gmail.com</u>

Dr. Shruti Paliwal

Project Research Scientist, Dr. Reddy institute of life science Hyderabad- 500019

Homeshvari

Ph.D. Research Scholar, Department of Horticulture, JNKVV, Jabalpur - 482004 **DOI:10.5281/TrendsinAgri.17329058**

Abstract

Vegetable crops are central to food security, nutrition and livelihood, but face challenges from climate change, pest pressure, soil fertility decline and nutritional deficiencies. Synthetic biology offers powerful tools to improve vegetable traits: higher nutritional quality, disease and abiotic stress resistance, optimized metabolic pathways and improved yield and shelf life. This article surveys the principles and practical applications of synthetic biology in vegetable crop improvement: gene editing, metabolic engineering, regulatory circuit design, synthetic epigenetics, synthetic directed evolution and AI-assisted design. It discusses propagation, field implementation, biosafety, regulatory and ethical dimensions and economic trade-offs.

Keywords: Synthetic biology, gene editing, metabolic engineering, vegetables, crop improvement, synthetic directed evolution, epigenetic engineering, regulatory circuits, nutritional enhancement, abiotic stress tolerance

Introduction

Vegetables are critical because they supply vitamins, minerals, fibre and bioactive compounds. Populations worldwide rely on vegetables for micronutrients. But vegetable production often lags because pests/diseases, heat, drought, salinity reduce productivity; nutritional quality of harvested vegetables is variable; shelf life is limited; and consumers expect high and clean quality. Traditional breeding, mutation breeding and transgenic approaches have helped, but synthetic biology brings new design power: precise edits, pathway re-engineering, regulatory circuit design and more predictable control of traits. Synthetic biology is the discipline of designing biological parts, devices and systems with

engineering principles: design-build-test-learn cycles, standardization, modularity and abstraction. In vegetables, it means creating new or modified genes, regulatory elements, synthetic promoters, metabolic pathways, epigenetic regulatory modules, even entirely novel regulatory circuits to control when, where and to what extent a trait is expressed. These can address nutrition (e.g. increasing provitamin A), flavour and aroma, stress resistance (drought, salinity, heat), disease resistance and postharvest traits.

Tools and Techniques in Synthetic Biology for Vegetables

Gene Editing and CRISPR/Cas systems

Gene editing technologies allow precise modifications: knockouts, base edits, promoter modifications, regulatory region changes. Vegetables such as tomato, pepper, spinach, eggplant, carrot have benefitted from CRISPR mediated edits to improve disease resistance, flowering time, fruit ripening and other traits. Base editors and prime editing help introduce subtle changes (e.g. single nucleotide) with lower off-target risk.

Metabolic Engineering and Pathway Rewiring

This involves introducing or amplifying metabolic pathways for desirable compounds (vitamins, antioxidants, aroma volatiles). For example, overexpression of gene variants in the carotenoid pathway in tomato has produced "golden" fruits with much higher β -carotene content. The challenge is balancing fluxes, avoiding accumulation of intermediates and ensuring that upregulation doesn't interfere with plant growth or yield.

Synthetic Regulatory Circuits and Promoters

Synthetic promoters, synthetic transcription factors, inducible regulatory switches allow spatiotemporal control: expressing traits only under stress, or in specific tissues, to avoid growth penalties. Use of tissue-specific promoters (e.g. fruit ripening stage, leaf, root) helps ensure trait expression where it matters and reduces metabolic cost elsewhere. Regulatory circuits can include feedback sensors (e.g. responsive to environmental triggers) that turn expression on/off.

Synthetic Epigenetics

Epigenetic regulation methylation, histone modifications, chromatin remodelling is recognized as a key lever in stress responses and development. Synthetic epigenetics means engineering or modulating epigenetic marks or regulators to alter phenotype without changing DNA sequence. For example, epigenetic editing tools (targeted demethylases or methyltransferases) can modulate stress-responsive genes. This is promising for traits where natural genetic variation is limited or where variety approval of transgenic DNA is difficult.

Synthetic Directed Evolution

When natural variation is limited, synthetic directed evolution, involving introducing variation (in coding or regulatory sequences), selecting under pressure and cycling, enables discovery of alleles with improved function (e.g. more enzyme efficiency, better tolerance). Recent advances include CRISPR-mediated mutagenesis of regulatory elements or coding regions, base editing libraries, prime-editing to generate many small variants and selection under field-like stress.

Multi-omics, AI and Design-Build-Test-Learn Cycles

Synthetic biology increasingly uses genomics, transcriptomics, metabolomics, proteomics to characterize systems, understand bottlenecks and guide design. Machine learning assists in identifying candidate genes, promoter designs, predicting promoter strength, design of protein variants and optimizing metabolic pathway flux. Biofoundries help build and test many variants in parallel, accelerating the iterative cycles.

Examples of Synthetic Biology in Vegetable Crops

Nutritional enhancement: provitamin A in tomato

Tomato has been engineered using overexpression of lycopene β -cyclase alleles derived from other species, producing fruit with much higher β -carotene, altering carotenoid profiles. The process involved not only inserting or overexpressing target genes but optimizing chromoplast development (organelle where carotenoids accumulate), balancing upstream and downstream enzymes and ensuring no detrimental effect on growth or flavour. This is one of the clearer success stories in vegetables. (Drawn from recent work in metabolic engineering)

Disease resistance: virus resistance using CRISPR/Cas13

Vegetables like tomato and others that suffer from viruses can benefit from synthetic biology: Cas13 systems which target RNA viruses (rather than DNA) allow resistance to multiple viruses via multiplexed guide RNAs. This approach offers broad-spectrum resistance and flexibility. However, delivery, stability of expression, regulatory acceptance remains open.

Fruit quality and metabolite profiles in strawberry

Synthetic biology and intragenesis (gene transfer within closely related species) have been used to accelerate improvements in fruit quality, aroma, colour and pathogen resistance in strawberry. Using new promoter and regulatory toolkits, it is possible to engineer more uniform ripening, increased sweetness or aroma, or better shelf life.

Epigenetic engineering & stress tolerance

Some vegetables suffer heat, drought, salinity, or combined stress. Synthetic epigenetic approaches can modulate expression of stress-responsive genes (e.g. transcription factors, osmoprotectants) via epigenetic editing tools, possibly improving resilience without altering underlying DNA sequences, easing certain regulatory concerns.

Synthetic directed evolution

Directed evolution has been applied to genes (coding sequences or regulatory), to evolve variants with better stability, enzyme activity, or stress tolerance. For vegetables, this can mean better enzyme variants for flavour compounds, or regulatory variants that confer more robust expression under heat or light variation.

Key Challenges and Trade-offs

Genotype × **Environment Interaction**

Even well-engineered traits may perform differently under field stress, soil variation, temperature fluctuations. Traits engineered in controlled conditions often lose expected performance under real conditions. Testing across environments is essential.

Growth Penalties and Metabolic Cost

Expression of synthetic pathways, overproduction of certain metabolites, or regulatory circuits that constitutively express stress response genes may reduce overall growth, yield, or reproductive success if energy is diverted. Balancing metabolic burden is important.

Off-target Effects and Unintended Consequences

Gene editing, regulatory element insertion, or epigenetic modification may affect non-target genes or pathways (pleiotropy). Comprehensive molecular and phenotypic screening is needed: transcriptome analysis, metabolome profiling, field trial assessment.

Regulatory, Biosafety and Public Acceptance

Synthetic biology in food crops faces regulatory scrutiny: gene edited or transgenic vegetables may be regulated differently in different countries; synthetically evolved alleles may blur lines; epigenetic edits may be perceived like genetic modification. Public perception, labelling, traceability and safety testing (e.g. allergenicity, environmental release) are critical.

Cost, Scale and Infrastructure

Developing synthetic biology traits requires lab infrastructure, regulatory compliance, seed propagation and scale field trials. For many vegetable crops grown by smallholders, resource investment and access to technology are constraints. Also, many vegetable crops are perishable, making trait deployment and distribution logistics challenging.

Table: Synthetic Biology Strategies in Vegetable Crop Improvement Species, Trait, Tool, Benefit, Limitation

Strategy	Vegetabl e Species	Trait Targeted	Synthetic Biology	Benefit / Monitored	Key Limitation /
	•		Tool(s)	Improveme	Considerati
			Employed	nt	on
Carotenoid	Tomato	Provitamin	Overexpressio	Increased β-	Possible
enhancement		Α (β-	n of lycopene	carotene	flavour or
		carotene)	β-cyclase	content	colour trade-
		increase	alleles,	dramatically	offs; stability
			pathway	; improved	under field
			engineering	nutritional	stress
				profile	
Virus	Tomato	Resistance	CRISPR-	Broad-	Delivering
resistance via	(and	to multiple	Cas13	spectrum	stable
RNA targeting	similar	RNA	multiplexed	virus	expression;
	vegetable	viruses	guide RNAs	resistance;	off-target
	s)			reduced	risk;
				yield losses	regulatory
					acceptance
Aromatic/flavo	Strawberr	Aroma	Intragenesis,	Better	Flavor
ur	у	compounds	promoter	flavour /	compounds
enhancement		and	tuning,	aroma;	may have
		sweetness	transcription	better	metabolic
			factor	market	cost;
			modulation	appeal	uniformity
					across fruits;
					shelf life
Stress (drought		Tolerance to	Synthetic	Improved	Field
/ heat)	` •	drought or		survival,	validation
tolerance	tomato,	heat stress	stress-	consistent	needed;
	pepper)		responsive	yield under	possible
			promoters;	stress	trade-offs
			regulatory		when stress
C1 1C 1:C	TD .	D 1 1	circuits	т.	absent
Shelf life	Tomato,	Delayed	Regulation of	Longer	Potential
extension	cucurbits	ripening,	ripening	storage;	reduced
		reduced	genes;	lower	flavor or
		spoilage	inducible	postharvest	texture;
			promoters	losses	consumer
Nutriont	Lacfi	Immusers 1	Dagulatage	Lower	acceptance
Nutrient use	Leafy	Improved	Regulatory	Lower fertilizer	Soil
efficiency	vegetable	uptake/use	circuits;		variation;
	S	of nitrogen	overexpressio	need;	off-target
			n of nutrient		effects; cost

		or	transporter	sustainabilit	of seed
		phosphorus	genes	y gain	material
Root	Root	Deeper or	Synthetic	Improved	Soil
architecture	vegetable	more	regulation of	water and	mechanical
optimization	s	branched	root	nutrient	constraints;
•		roots	development	capture;	unintended
			genes or	resilience	interactions
			transcription		
			factors		
Abiotic stress	Tomato,	Salinity	Gene editing	Improved	Salt
salinity	eggplant	stress	of ion	yield under	accumulatio
tolerance		mitigation	transporter	saline soils	n; cost;
			genes;		maintaining
			regulatory		yield in non-
			expression		saline soils
Anti-pathogen	Leafy	Fungal or	Synthetic	Reduced	Pathogen
/ disease	greens	bacterial	promoters	disease,	diversity;
resistance		pathogen	driving	fewer	durability of
		resistance	defense genes;	chemical	resistance;
			RNAi or	sprays	possible
			CRISPR		growth
			helper		penalty
			constructs		
Biosensor	Greenhou	Early	Synthetic	Early	Complexity;
integration	se	detection of	reporter	warning;	sensor
	vegetable	stress,	circuits,	reduced	degradation;
	S	nutrient	sensor	input waste;	field
		deficiency	promoters tied	targeted	robustness
		or	to visible	intervention	
		pathogens	markers	s	
Modular	Multiple	Multiple	Gene	Efficiency;	Interactions
metabolic	vegetable	trait	stacking;	combining	among traits;
pathway	S	improveme	synthetic	traits	metabolic
stacking		nts (nutrient	operon-like	reduces	load;
		+ flavour +	constructs;	breeding	complexity
		shelf life)	polycistronic	cycles	of
			design		transformati
					on
Transient	Tomato	Rapid test of	Agroinfiltrati	Saves time;	Transient not
expression	and others	gene	on; virus-	filters	always
systems for		candidates	based vectors;	promising	representativ
validation		(flavour,	transient	candidates	e; scale not
		nutrition,	promoter	before stable	viable
		resistance)	testing	transformati	commerciall
				on	у

Promoter	Vegetable	Gene	Synthetic	Trait	Promoter
engineering for	crops	expression	promoters	expression	leakiness;
environmental		only under	with cis-	tuned to	need precise
responsiveness		stress or	elements;	need;	environment
		specific	CRISPR-	reduces cost	al sensors
		cues (light,	based	or growth	
		drought)	promoter	penalty	
			editing		
High	Vegetable	Rapid	Imaging,	Speeds up	Cost;
throughput	breeding	screening of	machine	selection;	infrastructur
phenotyping	programs	synthetic	learning,	better data	e; managing
linked to		trait variants	robotics tied	per variant	large data
synthetic			to engineered		volumes
variants			lines		

Implementation Pathways, Biosafety and Regulatory Aspects

To deploy synthetic biology interventions in vegetables, several layers of implementation and governance are needed.

- Stable transformation vs transient expression: Transient systems are faster for testing, but stable, heritable transformations are needed for commercial varieties. Stable lines must be tested over generations for trait stability.
- Containment and field trials: Initial small field trials under containment are necessary to assess performance, environmental interactions, possible gene flow and unintended ecological effects.
- Biosafety and off-target risk monitoring: Molecular characterization (sequencing, off-target detection), metabolome profiling, allergenicity or toxicity assessments must be integrated.
- Regulatory approval: Regulations vary by country. Gene editing, transgenic inserts, synthetic promoter constructs, or epigenetic modifications may trigger different regulatory categories. Developers must engage early with regulatory bodies, understand permitted traits, labelling norms and intellectual property issues.
- Public acceptance and consumer perception: Vegetables are direct food; consumer concerns over "GMOs" or "synthetic modifications" are strong. Transparent communication about trait benefits, safety testing and regulatory oversight helps. Consider labelling and ensure that traits deliver consumer-relevant benefits (taste, nutrition, shelf life), not only traits invisible to consumer.
- Seed systems and access: Many vegetable varieties are maintained by small seed companies, public institutions, or informal systems. Ensuring that synthetic biology

traits are introgressed into locally preferred varieties and that seeds are accessible and affordable is critical for adoption.

Economic Considerations and Trade-offs

- Cost vs benefit: The cost of developing synthetic biology traits (lab infrastructure, molecular tools, regulatory costs) is high. Only traits with sufficient market value or widespread benefit justify that investment.
- Scale of production: Commercial deployment requires sufficient scale: seed multiplication, farmer adoption, supply chain alignment. For perishable vegetables, supply chain and postharvest logistics must match trait improvements (e.g. shelf life).
- Intellectual property and licensing: Many synthetic biology components (CRISPR tools, promoters, etc.) are under patents. Access and licensing costs may limit small or public breeding programs.
- **Time to deliver**: Regulatory approvals, trait stability, field evaluations often take several seasons, delaying benefits. Breeding cycles for vegetables can be shorter than cereals, which helps, but still multi-year.
- Risk of trait failure in variable environments: Traits that perform well under greenhouse or optimal conditions may fail under heat, drought, or soil constraints.
 Risk mitigation includes multi-site trials, backups and perhaps epigenetic or regulatory designs that condition trait expression on environment.

Conclusion

Synthetic biology provides powerful, precise and flexible tools for vegetable crop improvement. Success stories such as enhanced provitamin A in tomato, virus resistance, flavor or aroma enhancement in berry or fruit vegetables demonstrate that the tools work in controlled conditions. At the same time, realistic deployment demands careful attention to environment, metabolic cost, regulatory frameworks, public perception and economic scale. The most promising path is hybrid: combining synthetic biology with traditional breeding, local variety preferences, multi-site trials and scalable seed systems. For vegetable breeders, agronomists and policy makers, synthetic biology is not a silver bullet, but a potent lever. With these practices, synthetic biology has the potential to substantially improve nutrition,

References

Sargent, D., Conaty, W. C., Tissue, D. T., & Sharwood, R. E. (2022). Synthetic biology and opportunities within agricultural crops. *Journal of Sustainable Agriculture and Environment*, *I*(2), 89-107.

resilience and productivity in vegetable cropping systems over the coming decade.

Zhang D, Xu F, Wang F, Le L, Pu L. Synthetic biology and artificial intelligence in crop improvement. Plant Communications. 2025 Feb 10;6(2).

- Kubis, A., & Bar-Even, A. (2019). Synthetic biology approaches for improving photosynthesis. *Journal of Experimental Botany*, 70(5), 1425-1433.
- Barnum, C. R., Endelman, B. J., & Shih, P. M. (2021). Utilizing plant synthetic biology to improve human health and wellness. *Frontiers in Plant Science*, *12*, 691462.
- Ghosh, D. (2025). Synthetic Biology and Systems Biology in Vegetable Improvement. Shabbir Ahmed Jyotika Purohit Kiran Mary Kandir Anirudha Chattopadhyay Anubhav Singh, 142.
- Gosal, S. S., Wani, S. H., & Kang, M. S. (2010). Biotechnology and crop improvement. *Journal of Crop Improvement*, 24(2), 153-217.
- Hayakawa, T., Suzuki, H., Yamamoto, H., & Mitsuda, N. (2024). Synthetic biology in plants. *Plant Biotechnology*, 41(3), 173-193.